五月婷婷018_国产 经典 精品 欧美 日韩_日韩一区二区在线播放_久久精品无线播放

有途教育

三角函數(shù)公式大全表格 速記口訣是什么

張婧軒2023-08-07 12:04:28

三角函數(shù)公式看似很多、很復(fù)雜,但只要掌握了三角函數(shù)的本質(zhì)及內(nèi)部規(guī)律,就會發(fā)現(xiàn)三角函數(shù)各個公式之間有強大的聯(lián)系。而掌握三角函數(shù)的內(nèi)部規(guī)律及本質(zhì)也是學(xué)好三角函數(shù)的關(guān)鍵所在。下面和小編一起看看具體有哪些公式吧!

三角函數(shù)公式大全表格 速記口訣是什么

三角函數(shù)公式整理大全

三角函數(shù)在研究三角形和圓等幾何形狀的性質(zhì)時有重要作用,也是研究周期性現(xiàn)象的基礎(chǔ)數(shù)學(xué)工具。在數(shù)學(xué)分析中,三角函數(shù)也被定義為無窮級數(shù)或特定微分方程的解,允許它們的取值擴展到任意實數(shù)值,甚至是復(fù)數(shù)值。以下是相關(guān)的公式:

兩角和公式

sin(A+B) = sinAcosB+cosAsinB

sin(A-B) = sinAcosB-cosAsinB

cos(A+B) = cosAcosB-sinAsinB

cos(A-B) = cosAcosB+sinAsinB

tan(A+B) = (tanA+tanB)/(1-tanAtanB)

tan(A-B) = (tanA-tanB)/(1+tanAtanB)

cot(A+B) = (cotAcotB-1)/(cotB+cotA)

cot(A-B) = (cotAcotB+1)/(cotB-cotA)

倍角公式

tan2A = 2tanA/(1-tan^2 A)

Sin2A=2SinA?CosA

Cos2A = Cos^2 A--Sin^2 A

=2Cos^2 A—1

=1—2sin^2 A

三倍角公式

sin3A = 3sinA-4(sinA)^3;

cos3A = 4(cosA)^3 -3cosA

tan3a = tan a ? tan(π/3+a)? tan(π/3-a)

半角公式

sin(A/2) = √{(1--cosA)/2}

cos(A/2) = √{(1+cosA)/2}

tan(A/2) = √{(1--cosA)/(1+cosA)}

cot(A/2) = √{(1+cosA)/(1-cosA)} ?

tan(A/2) = (1--cosA)/sinA=sinA/(1+cosA)

和差化積

sin(a)+sin(b) = 2sin[(a+b)/2]cos[(a-b)/2]

sin(a)-sin(b) = 2cos[(a+b)/2]sin[(a-b)/2]

cos(a)+cos(b) = 2cos[(a+b)/2]cos[(a-b)/2]

cos(a)-cos(b) = -2sin[(a+b)/2]sin[(a-b)/2]

tanA+tanB=sin(A+B)/cosAcosB

積化和差

sin(a)sin(b) = -1/2*[cos(a+b)-cos(a-b)]

cos(a)cos(b) = 1/2*[cos(a+b)+cos(a-b)]

sin(a)cos(b) = 1/2*[sin(a+b)+sin(a-b)]

cos(a)sin(b) = 1/2*[sin(a+b)-sin(a-b)]

誘導(dǎo)公式

sin(-a) = -sin(a)

cos(-a) = cos(a)

sin(π/2-a) = cos(a)

cos(π/2-a) = sin(a)

sin(π/2+a) = cos(a)

cos(π/2+a) = -sin(a)

sin(π-a) = sin(a)

cos(π-a) = -cos(a)

sin(π+a) = -sin(a)

cos(π+a) = -cos(a)

tgA=tanA = sinA/cosA

萬能公式

sin(a) = [2tan(a/2)] / {1+[tan(a/2)]^2}

cos(a) = {1-[tan(a/2)]^2} / {1+[tan(a/2)]^2}

tan(a) = [2tan(a/2)]/{1-[tan(a/2)]^2}

其它公式

a?sin(a)+b?cos(a) = [√(a^2+b^2)]*sin(a+c) [其中,tan(c)=b/a]

a?sin(a)-b?cos(a) = [√(a^2+b^2)]*cos(a-c) [其中,tan(c)=a/b]

1+sin(a) = [sin(a/2)+cos(a/2)]^2;

1-sin(a) = [sin(a/2)-cos(a/2)]^2;;

其他非重點三角函數(shù)

csc(a) = 1/sin(a)

sec(a) = 1/cos(a)

三角函數(shù)公式速記口訣是什么

“奇變偶不變”是說,角前面的度數(shù)是90度的倍數(shù)。如果是偶數(shù),則函數(shù)名稱不變,如果是奇數(shù),則要變成它的余函數(shù)(正、余弦互相變,正、余切互相變,正、余割互相變)

例如cos270°-α= - sinα中, 270°是90°的3奇數(shù)倍所以cos變?yōu)閟in,即奇變;又sin180°+α= - sinα中,180°是90°的2偶數(shù)倍所以sin還是sin,即偶不變。

“符號看象限”是說,要服從原來的角所在的象限中原來函數(shù)的符號。

例如cos270°-α=-sinα中,視α為銳角,270°-α是第三象限角,第三象限角的余弦為負(fù),所以等式右邊為負(fù)號。又如sin180°+α=-sinα中,視α為銳角,180°+α是第三象限角,第三象限角的正弦為負(fù),所以等式右邊有負(fù)號。

注意:公式中α可以不是銳角,只是為了記住公式,視α為銳角。

熱門推薦

最新文章