0,那么(3)|a?b|=|a|?|b|.(5)|a|-|b|≤|a±b|≤|a|+|b|.(6)|a1+a2+……+an|≤|a1|+|a2|+……+|an|">

五月婷婷018_国产 经典 精品 欧美 日韩_日韩一区二区在线播放_久久精品无线播放

有途網(wǎng)

高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 高二上學(xué)期數(shù)學(xué)學(xué)什么

程爽2018-10-31 13:32:43

很多人想知道高二數(shù)學(xué)的學(xué)習(xí)上有哪些重要的知識(shí)點(diǎn),小編為大家整理了一些高二數(shù)學(xué)的重點(diǎn)知識(shí),供參考!

高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 高二上學(xué)期數(shù)學(xué)學(xué)什么

高二上學(xué)期數(shù)學(xué)知識(shí)點(diǎn)總結(jié)

一、不等式的性質(zhì)

1.兩個(gè)實(shí)數(shù)a與b之間的大小關(guān)系

2.不等式的性質(zhì)

(4)(乘法單調(diào)性)

3.絕對(duì)值不等式的性質(zhì)

(2)如果a>0,那么

(3)|a?b|=|a|?|b|.

(5)|a|-|b|≤|a±b|≤|a|+|b|.

(6)|a1+a2+……+an|≤|a1|+|a2|+……+|an|.

二、不等式的證明

1.不等式證明的依據(jù)

(2)不等式的性質(zhì)(略)

(3)重要不等式:①|(zhì)a|≥0;a2≥0;(a-b)2≥0(a、b∈R)

②a2+b2≥2ab(a、b∈R,當(dāng)且僅當(dāng)a=b時(shí)取“=”號(hào))

2.不等式的證明方法

(1)比較法:要證明a>b(a0(a-b<0),這種證明不等式的方法叫做比較法.

用比較法證明不等式的步驟是:作差——變形——判斷符號(hào).

(2)綜合法:從已知條件出發(fā),依據(jù)不等式的性質(zhì)和已證明過(guò)的不等式,推導(dǎo)出所要證明的不等式成立,這種證明不等式的方法叫做綜合法.

(3)分析法:從欲證的不等式出發(fā),逐步分析使這不等式成立的充分條件,直到所需條件已判斷為正確時(shí),從而斷定原不等式成立,這種證明不等式的方法叫做分析法.

證明不等式除以上三種基本方法外,還有反證法、數(shù)學(xué)歸納法等.

三、解不等式

1.解不等式問(wèn)題的分類(lèi)

(1)解一元一次不等式.

(2)解一元二次不等式.

(3)可以化為一元一次或一元二次不等式的不等式.

①解一元高次不等式;

②解分式不等式;

③解無(wú)理不等式;

④解指數(shù)不等式;

⑤解對(duì)數(shù)不等式;

⑥解帶絕對(duì)值的不等式;

⑦解不等式組.

2.解不等式時(shí)應(yīng)特別注意下列幾點(diǎn):

(1)正確應(yīng)用不等式的基本性質(zhì).

(2)正確應(yīng)用冪函數(shù)、指數(shù)函數(shù)和對(duì)數(shù)函數(shù)的增、減性.

(3)注意代數(shù)式中未知數(shù)的取值范圍.

3.不等式的同解性

(5)|f(x)|0)

(6)|f(x)|>g(x)①與f(x)>g(x)或f(x)<-g(x)(其中g(shù)(x)≥0)同解;②與g(x)<0同解.

(9)當(dāng)a>1時(shí),af(x)>ag(x)與f(x)>g(x)同解,當(dāng)0ag(x)與f(x)

四、《不等式》

解不等式的途徑,利用函數(shù)的性質(zhì)。對(duì)指無(wú)理不等式,化為有理不等式。

高次向著低次代,步步轉(zhuǎn)化要等價(jià)。數(shù)形之間互轉(zhuǎn)化,幫助解答作用大。

證不等式的方法,實(shí)數(shù)性質(zhì)威力大。求差與0比大小,作商和1爭(zhēng)高下。

直接困難分析好,思路清晰綜合法。非負(fù)常用基本式,正面難則反證法。

還有重要不等式,以及數(shù)學(xué)歸納法。圖形函數(shù)來(lái)幫助,畫(huà)圖建模構(gòu)造法。

五、《立體幾何》

點(diǎn)線面三位一體,柱錐臺(tái)球?yàn)榇?。距離都從點(diǎn)出發(fā),角度皆為線線成。

垂直平行是重點(diǎn),證明須弄清概念。線線線面和面面、三對(duì)之間循環(huán)現(xiàn)。

方程思想整體求,化歸意識(shí)動(dòng)割補(bǔ)。計(jì)算之前須證明,畫(huà)好移出的圖形。

立體幾何輔助線,常用垂線和平面。射影概念很重要,對(duì)于解題最關(guān)鍵。

異面直線二面角,體積射影公式活。公理性質(zhì)三垂線,解決問(wèn)題一大片。

六、《平面解析幾何》

有向線段直線圓,橢圓雙曲拋物線,參數(shù)方程極坐標(biāo),數(shù)形結(jié)合稱(chēng)典范。

笛卡爾的觀點(diǎn)對(duì),點(diǎn)和有序?qū)崝?shù)對(duì),兩者—一來(lái)對(duì)應(yīng),開(kāi)創(chuàng)幾何新途徑。

兩種思想相輝映,化歸思想打前陣;都說(shuō)待定系數(shù)法,實(shí)為方程組思想。

三種類(lèi)型集大成,畫(huà)出曲線求方程,給了方程作曲線,曲線位置關(guān)系判。

四件工具是法寶,坐標(biāo)思想?yún)?shù)好;平面幾何不能丟,旋轉(zhuǎn)變換復(fù)數(shù)求。

解析幾何是幾何,得意忘形學(xué)不活。圖形直觀數(shù)入微,數(shù)學(xué)本是數(shù)形學(xué)

七、《排列、組合、二項(xiàng)式定理》

加法乘法兩原理,貫穿始終的法則。與序無(wú)關(guān)是組合,要求有序是排列。

兩個(gè)公式兩性質(zhì),兩種思想和方法。歸納出排列組合,應(yīng)用問(wèn)題須轉(zhuǎn)化。

排列組合在一起,先選后排是常理。特殊元素和位置,首先注意多考慮。

不重不漏多思考,捆綁插空是技巧。排列組合恒等式,定義證明建模試。

關(guān)于二項(xiàng)式定理,中國(guó)楊輝三角形。兩條性質(zhì)兩公式,函數(shù)賦值變換式。

八、《復(fù)數(shù)》

虛數(shù)單位i一出,數(shù)集擴(kuò)大到復(fù)數(shù)。一個(gè)復(fù)數(shù)一對(duì)數(shù),橫縱坐標(biāo)實(shí)虛部。

對(duì)應(yīng)復(fù)平面上點(diǎn),原點(diǎn)與它連成箭。箭桿與X軸正向,所成便是輻角度。

箭桿的長(zhǎng)即是模,常將數(shù)形來(lái)結(jié)合。代數(shù)幾何三角式,相互轉(zhuǎn)化試一試。

代數(shù)運(yùn)算的實(shí)質(zhì),有i多項(xiàng)式運(yùn)算。i的正整數(shù)次慕,四個(gè)數(shù)值周期現(xiàn)。

一些重要的結(jié)論,熟記巧用得結(jié)果。虛實(shí)互化本領(lǐng)大,復(fù)數(shù)相等來(lái)轉(zhuǎn)化。

利用方程思想解,注意整體代換術(shù)。幾何運(yùn)算圖上看,加法平行四邊形,

減法三角法則判;乘法除法的運(yùn)算,逆向順向做旋轉(zhuǎn),伸縮全年模長(zhǎng)短。

三角形式的運(yùn)算,須將輻角和模辨。利用棣莫弗公式,乘方開(kāi)方極方便。

輻角運(yùn)算很奇特,和差是由積商得。四條性質(zhì)離不得,相等和模與共軛,

兩個(gè)不會(huì)為實(shí)數(shù),比較大小要不得。復(fù)數(shù)實(shí)數(shù)很密切,須注意本質(zhì)區(qū)別。

高二上學(xué)期數(shù)學(xué)重點(diǎn)知識(shí)大全

一、集合、簡(jiǎn)易邏輯(14課時(shí),8個(gè))1.集合;2.子集;3.補(bǔ)集;4.交集;5.并集;6.邏輯連結(jié)詞;7.四種命題;8.充要條件.

二、函數(shù)(30課時(shí),12個(gè))1.映射;2.函數(shù);3.函數(shù)的單調(diào)性;4.反函數(shù);5.互為反函數(shù)的函數(shù)圖象間的關(guān)系;6.指數(shù)概念的擴(kuò)充;7.有理指數(shù)冪的運(yùn)算;8.指數(shù)函數(shù);9.對(duì)數(shù);10.對(duì)數(shù)的運(yùn)算性質(zhì);11.對(duì)數(shù)函數(shù).12.函數(shù)的應(yīng)用舉例.

三、數(shù)列(12課時(shí),5個(gè))1.數(shù)列;2.等差數(shù)列及其通項(xiàng)公式;3.等差數(shù)列前n項(xiàng)和公式;4.等比數(shù)列及其通頂公式;5.等比數(shù)列前n項(xiàng)和公式.

四、三角函數(shù)(46課時(shí)17個(gè))1.角的概念的推廣;2.弧度制;3.任意角的三角函數(shù);4,單位圓中的三角函數(shù)線;5.同角三角函數(shù)的基本關(guān)系式;6.正弦、余弦的誘導(dǎo)公式’7.兩角和與差的正弦、余弦、正切;8.二倍角的正弦、余弦、正切;9.正弦函數(shù)、余弦函數(shù)的圖象和性質(zhì);10.周期函數(shù);11.函數(shù)的奇偶性;12.函數(shù)的圖象;13.正切函數(shù)的圖象和性質(zhì);14.已知三角函數(shù)值求角;15.正弦定理;16余弦定理;17斜三角形解法舉例.

五、平面向量(12課時(shí),8個(gè))1.向量2.向量的加法與減法3.實(shí)數(shù)與向量的積;4.平面向量的坐標(biāo)表示;5.線段的定比分點(diǎn);6.平面向量的數(shù)量積;7.平面兩點(diǎn)間的距離;8.平移.

六、不等式(22課時(shí),5個(gè))1.不等式;2.不等式的基本性質(zhì);3.不等式的證明;4.不等式的解法;5.含絕對(duì)值的不等式.

七、直線和圓的方程(22課時(shí),12個(gè))1.直線的傾斜角和斜率;2.直線方程的點(diǎn)斜式和兩點(diǎn)式;3.直線方程的一般式;4.兩條直線平行與垂直的條件;5.兩條直線的交角;6.點(diǎn)到直線的距離;7.用二元一次不等式表示平面區(qū)域;8.簡(jiǎn)單線性規(guī)劃問(wèn)題.9.曲線與方程的概念;10.由已知條件列出曲線方程;11.圓的標(biāo)準(zhǔn)方程和一般方程;12.圓的參數(shù)方程.

八、圓錐曲線(18課時(shí),7個(gè))1橢圓及其標(biāo)準(zhǔn)方程;2.橢圓的簡(jiǎn)單幾何性質(zhì);3.橢圓的參數(shù)方程;4.雙曲線及其標(biāo)準(zhǔn)方程;5.雙曲線的簡(jiǎn)單幾何性質(zhì);6.拋物線及其標(biāo)準(zhǔn)方程;7.拋物線的簡(jiǎn)單幾何性質(zhì).

九、(B)直線、平面、簡(jiǎn)單何體(36課時(shí),28個(gè))1.平面及基本性質(zhì);2.平面圖形直觀圖的畫(huà)法;3.平面直線;4.直線和平面平行的判定與性質(zhì);5,直線和平面垂直的判與性質(zhì);6.三垂線定理及其逆定理;7.兩個(gè)平面的位置關(guān)系;8.空間向量及其加法、減法與數(shù)乘;9.空間向量的坐標(biāo)表示;10.空間向量的數(shù)量積;11.直線的方向向量;12.異面直線所成的角;13.異面直線的公垂線;14異面直線的距離;15.直線和平面垂直的性質(zhì);16.平面的法向量;17.點(diǎn)到平面的距離;18.直線和平面所成的角;19.向量在平面內(nèi)的射影;20.平面與平面平行的性質(zhì);21.平行平面間的距離;22.二面角及其平面角;23.兩個(gè)平面垂直的判定和性質(zhì);24.多面體;25.棱柱;26.棱錐;27.正多面體;28.球.

十、排列、組合、二項(xiàng)式定理(18課時(shí),8個(gè))1.分類(lèi)計(jì)數(shù)原理與分步計(jì)數(shù)原理.2.排列;3.排列數(shù)公式’4.組合;5.組合數(shù)公式;6.組合數(shù)的兩個(gè)性質(zhì);7.二項(xiàng)式定理;8.二項(xiàng)展開(kāi)式的性質(zhì).

高二數(shù)學(xué)期末復(fù)習(xí)建議

1、高二數(shù)學(xué)期末考試首先是對(duì)高二數(shù)學(xué)學(xué)習(xí)的檢測(cè),所以先要保證自己的基礎(chǔ)知識(shí)沒(méi)有問(wèn)題,那么就需要高二學(xué)生在進(jìn)行高二數(shù)學(xué)期末復(fù)習(xí)的時(shí)候要著重書(shū)上的重要知識(shí)點(diǎn),在做題的時(shí)候一定要知道自己運(yùn)用的什么知識(shí)點(diǎn),如有不會(huì)及時(shí)解決。

2、高二數(shù)學(xué)期末考試中基礎(chǔ)題為主要,所以在進(jìn)行練習(xí)的時(shí)候要對(duì)典型題的解題步驟和易錯(cuò)要點(diǎn)注意。比如利用導(dǎo)數(shù)求函數(shù)單調(diào)性的步驟,數(shù)學(xué)歸納法的基本思路和步驟,排列組合中的分類(lèi)討論、排除法問(wèn)題,用二項(xiàng)式定理求展開(kāi)式中某項(xiàng)系數(shù)問(wèn)題,服從典型分布的離散型隨機(jī)變量問(wèn)題。一定要細(xì)心,保證自己會(huì)的不丟分。

3、高二數(shù)學(xué)期末復(fù)習(xí)的時(shí)候就要學(xué)會(huì)掌控時(shí)間,數(shù)學(xué)對(duì)于有些人來(lái)說(shuō)做題是很費(fèi)時(shí)間的,所以一定要勤加練習(xí),別造成考試的時(shí)候題會(huì)做,但是沒(méi)有時(shí)間做,這樣就很傷心了。

4、學(xué)習(xí)不能是死學(xué),一定要活學(xué)活用,一個(gè)題目會(huì)了就要保證相類(lèi)似的題型就差不多沒(méi)問(wèn)題。

5、考試中也會(huì)有難題出現(xiàn),這就考查學(xué)生的能力了,所以在高二數(shù)學(xué)期末復(fù)習(xí)中還要做一些難題,以保證考試的時(shí)候沒(méi)有思路。

熱門(mén)推薦

最新文章