五月婷婷018_国产 经典 精品 欧美 日韩_日韩一区二区在线播放_久久精品无线播放

有途網(wǎng)

復(fù)合函數(shù)求導(dǎo)公式大全 大學(xué)復(fù)合函數(shù)求導(dǎo)法則

劉美娟2018-11-22 14:38:01

復(fù)合函數(shù)如何求導(dǎo)?大學(xué)符合函數(shù)求導(dǎo)公式有哪些?下文有途網(wǎng)小編給大家整理了復(fù)合函數(shù)的求導(dǎo)公式及法則,供參考!

復(fù)合函數(shù)求導(dǎo)公式

復(fù)合函數(shù)求導(dǎo)公式

復(fù)合函數(shù)求導(dǎo)公式

復(fù)合函數(shù)求導(dǎo)公式

復(fù)合函數(shù)求導(dǎo)法則

證法一:先證明個(gè)引理

f(x)在點(diǎn)x0可導(dǎo)的充要條件是在x0的某鄰域U(x0)內(nèi),存在一個(gè)在點(diǎn)x0連續(xù)的函數(shù)H(x),使f(x)-f(x0)=H(x)(x-x0)從而f'(x0)=H(x0)

證明:設(shè)f(x)在x0可導(dǎo),令 H(x)=[f(x)-f(x0)]/(x-x0),x∈U'(x0)(x0去心鄰域);H(x)=f'(x0),x=x0

因lim(x->x0)H(x)=lim(x->x0)[f(x)-f(x0)]/(x-x0)=f'(x0)=H(x0)

所以H(x)在點(diǎn)x0連續(xù),且f(x)-f(x0)=H(x)(x-x0),x∈U(x0)

反之,設(shè)存在H(x),x∈U(x0),它在點(diǎn)x0連續(xù),且f(x)-f(x0)=H(x)(x-x0),x∈U(x0)

因存在極限lim(x->x0)H(x)=lim(x->x0)[f(x)-f(x0)]/(x-x0)=lim(x->x0)f'(x)=H(x0)

所以f(x)在點(diǎn)x0可導(dǎo),且f'(x0)=H(x0)

引理證畢。

設(shè)u=φ(x)在點(diǎn)u0可導(dǎo),y=f(u)在點(diǎn)u0=φ(x0)可導(dǎo),則復(fù)合函數(shù)F(x)=f(φ(x))在x0可導(dǎo),且F'(x0)=f'(u0)φ'(x0)=f'(φ(x0))φ'(x0)

證明:由f(u)在u0可導(dǎo),由引理必要性,存在一個(gè)在點(diǎn)u0連續(xù)的函數(shù)H(u),使f'(u0)=H(u0),且f(u)-f(u0)=H(u)(u-u0)

又由u=φ(x)在x0可導(dǎo),同理存在一個(gè)在點(diǎn)x0連續(xù)函數(shù)G(x),使φ'(x0)=G(x0),且φ(x)-φ(x0)=G(x)(x-x0)

于是就有,f(φ(x))-f(φ(x0))=H(φ(x))(φ(x)-φ(x0))=H(φ(x))G(x)(x-x0)

因?yàn)棣?,G在x0連續(xù),H在u0=φ(x0)連續(xù),因此H(φ(x))G(x)在x0連續(xù),再由引理的充分性可知F(x)在x0可導(dǎo),且

F'(x0)=f'(u0)φ'(x0)=f'(φ(x0))φ'(x0)

證法二:y=f(u)在點(diǎn)u可導(dǎo),u=g(x)在點(diǎn)x可導(dǎo),則復(fù)合函數(shù)y=f(g(x))在點(diǎn)x0可導(dǎo),且dy/dx=(dy/du)*(du/dx)

證明:因?yàn)閥=f(u)在u可導(dǎo),則lim(Δu->0)Δy/Δu=f'(u)或Δy/Δu=f'(u)+α(lim(Δu->0)α=0)

當(dāng)Δu≠0,用Δu乘等式兩邊得,Δy=f'(u)Δu+αΔu

但當(dāng)Δu=0時(shí),Δy=f(u+Δu)-f(u)=0,故上等式還是成立。

又因?yàn)棣≠0,用Δx除以等式兩邊,且求Δx->0的極限,得

dy/dx=lim(Δx->0)Δy/Δx=lim(Δx->0)[f'(u)Δu+αΔu]/Δx=f'(u)lim(Δx->0)Δu/Δx+lim(Δx->0)αΔu/Δx

又g(x)在x處連續(xù)(因?yàn)樗蓪?dǎo)),故當(dāng)Δx->0時(shí),有Δu=g(x+Δx)-g(x)->0

則lim(Δx->0)α=0

最終有dy/dx=(dy/du)*(du/dx)

熱門推薦

最新文章