五月婷婷018_国产 经典 精品 欧美 日韩_日韩一区二区在线播放_久久精品无线播放

有途網(wǎng)

2019高二數(shù)學(xué)知識點總結(jié) 數(shù)學(xué)老師看了都叫好

徐克達2019-03-27 15:15:41

很多同學(xué)對于數(shù)學(xué)知識點并不是很重是,認為只要會方法就可以了,其實不然,往往出題人都會考察學(xué)生們對于知識點的掌握情況,下面是小編整理的高二數(shù)學(xué)知識點,供參考。

2019高二數(shù)學(xué)知識點總結(jié) 數(shù)學(xué)老師看了都叫好

高二數(shù)學(xué)知識點總結(jié)

一、不等式的性質(zhì)

1.兩個實數(shù)a與b之間的大小關(guān)系

2.不等式的性質(zhì)

(4) (乘法單調(diào)性)

3.絕對值不等式的性質(zhì)

(2)如果a>0,那么

(3)|a?b|=|a|?|b|.

(5)|a|-|b|≤|a±b|≤|a|+|b|.

(6)|a1+a2+……+an|≤|a1|+|a2|+……+|an|.

二、不等式的證明

1.不等式證明的依據(jù)

(2)不等式的性質(zhì)(略)

(3)重要不等式:①|(zhì)a|≥0;a2≥0;(a-b)2≥0(a、b∈R)

②a2+b2≥2ab(a、b∈R,當且僅當a=b時取“=”號)

2.不等式的證明方法

(1)比較法:要證明a>b(a<b),只要證明a-b>0(a-b<0),這種證明不等式的方法叫做比較法.

用比較法證明不等式的步驟是:作差——變形——判斷符號.

(2)綜合法:從已知條件出發(fā),依據(jù)不等式的性質(zhì)和已證明過的不等式,推導(dǎo)出所要證明的不等式成立,這種證明不等式的方法叫做綜合法.

(3)分析法:從欲證的不等式出發(fā),逐步分析使這不等式成立的充分條件,直到所需條件已判斷為正確時,從而斷定原不等式成立,這種證明不等式的方法叫做分析法.

證明不等式除以上三種基本方法外,還有反證法、數(shù)學(xué)歸納法等.

三、解不等式

1.解不等式問題的分類

(1)解一元一次不等式.

(2)解一元二次不等式.

(3)可以化為一元一次或一元二次不等式的不等式.

①解一元高次不等式;

②解分式不等式;

③解無理不等式;

④解指數(shù)不等式;

⑤解對數(shù)不等式;

⑥解帶絕對值的不等式;

⑦解不等式組.

2.解不等式時應(yīng)特別注意下列幾點:

(1)正確應(yīng)用不等式的基本性質(zhì).

(2)正確應(yīng)用冪函數(shù)、指數(shù)函數(shù)和對數(shù)函數(shù)的增、減性.

(3)注意代數(shù)式中未知數(shù)的取值范圍.

3.不等式的同解性

(4)|f(x)|<g(x)與-g(x)<f(x)<g(x)同解.(g(x)>0)

(5)|f(x)|>g(x)①與f(x)>g(x)或f(x)<-g(x)(其中g(shù)(x)≥0)同解;②與g(x)<0同解.

(6)當a>1時,af(x)>ag(x)與f(x)>g(x)同解,當0<a<1時,af(x)>ag(x)與f(x)<g(x)同

四、集合、簡易邏輯

1.集合;2.子集;3.補集;4.交集;5.并集;6.邏輯連結(jié)詞;7.四種命題;8.充要條件。

五、函數(shù)

1.映射;2.函數(shù);3.函數(shù)的單調(diào)性;4.反函數(shù);5.互為反函數(shù)的函數(shù)圖象間的關(guān)系;6.指數(shù)概念的擴充;7.有理指數(shù)冪的運算;8.指數(shù)函數(shù);9.對數(shù);10.對數(shù)的運算性質(zhì);11.對數(shù)函數(shù).12.函數(shù)的應(yīng)用舉例。

六、直線、平面、簡單何體

1.平面及基本性質(zhì);2.平面圖形直觀圖的畫法;3.平面直線;4.直線和平面平行的判定與性質(zhì);5.直線和平面垂直的判定與性質(zhì);6.三垂線定理及其逆定理;7.兩個平面的位置關(guān)系;8.空間向量及其加法、減法與數(shù)乘;9.空間向量的坐標表示;10.空間向量的數(shù)量積;11.直線的方向向量;12.異面直線所成的角;13.異面直線的公垂線;14.異面直線的距離;15.直線和平面垂直的性質(zhì);16.平面的法向量;17.點到平面的距離;18.直線和平面所成的角;19.向量在平面內(nèi)的射影;20.平面與平面平行的性質(zhì);21.平行平面間的距離;22.二面角及其平面角;23.兩個平面垂直的判定和性質(zhì);24.多面體;25.棱柱;26.棱錐;27.正多面體;28.球。

高二數(shù)學(xué)常見公式

平方關(guān)系:

sin^2α+cos^2α=1

1+tan^2α=sec^2α

1+cot^2α=csc^2α

積的關(guān)系:

sinα=tanα×cosα

cosα=cotα×sinα

tanα=sinα×secα

cotα=cosα×cscα

secα=tanα×cscα

cscα=secα×cotα

倒數(shù)關(guān)系:

tanα ·cotα=1

sinα ·cscα=1

cosα ·secα=1

商的關(guān)系:

sinα/cosα=tanα=secα/cscα

cosα/sinα=cotα=cscα/secα

直角三角形ABC中,

角A的正弦值就等于角A的對邊比斜邊,

余弦等于角A的鄰邊比斜邊

正切等于對邊比鄰邊,

[1]三角函數(shù)恒等變形公式

兩角和與差的三角函數(shù):

cos(α+β)=cosα·cosβ-sinα·sinβ

cos(α-β)=cosα·cosβ+sinα·sinβ

sin(α±β)=sinα·cosβ±cosα·sinβ

tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)

tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)

三角和的三角函數(shù):

sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ

cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ

tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)

輔助角公式:

Asinα+Bcosα=(A2+B2)^(1/2)sin(α+t),其中

sint=B/(A2+B2)^(1/2)

cost=A/(A2+B2)^(1/2)

tant=B/A

Asinα-Bcosα=(A2+B2)^(1/2)cos(α-t),tant=A/B

倍角公式:

sin(2α)=2sinα·cosα=2/(tanα+cotα)

cos(2α)=cos2(α)-sin2(α)=2cos2(α)-1=1-2sin2(α)

tan(2α)=2tanα/[1-tan2(α)]

三倍角公式:

sin(3α)=3sinα-4sin3(α)=4sinα·sin(60+α)sin(60-α)

cos(3α)=4cos3(α)-3cosα=4cosα·cos(60+α)cos(60-α)

tan(3α)=tan a · tan(π/3+a)· tan(π/3-a)

半角公式:

sin(α/2)=±√((1-cosα)/2)

cos(α/2)=±√((1+cosα)/2)

tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα

降冪公式

sin2(α)=(1-cos(2α))/2=versin(2α)/2

cos2(α)=(1+cos(2α))/2=covers(2α)/2

tan2(α)=(1-cos(2α))/(1+cos(2α))

萬能公式:

sinα=2tan(α/2)/[1+tan2(α/2)]

cosα=[1-tan2(α/2)]/[1+tan2(α/2)]

tanα=2tan(α/2)/[1-tan2(α/2)]

積化和差公式:

sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]

cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]

cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]

sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]

和差化積公式:

sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]

sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]

cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]

cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]

學(xué)習(xí)高中數(shù)學(xué)三部曲

1. 一本書

就是教科書,這是基礎(chǔ)的基礎(chǔ),但是被中等生最忽視的。我在高中時,先看教科書再做題,所以往往同學(xué)做到第5題,我才剛開始,但當我做了20題時,反過來發(fā)現(xiàn)同學(xué)做到第17題,這就是磨刀不誤砍柴工。最后不僅省時,而且比同學(xué)多鞏固了書本知識,然后從書本原理到題目及從題目到原理走了一個來回,培養(yǎng)了以理論解決實際問題的能力,提高了以不變應(yīng)萬變的能力。一句話,省時又高效。為擺脫題海打下了基礎(chǔ)。

2. 兩方法

1)找到已知與求解的“橋梁”。主要針對中等題及難題,利用已知,推一步或幾步,完成轉(zhuǎn)化,從求解往后推幾步,看看還缺什么,再去回憶腦袋里的知識點及解過的經(jīng)典題,把已知與求解的差距補上,這個就是“橋梁”原理。

2)有些題按上述方法還遇到困難,可能需要另辟蹊徑,如從定義出發(fā)或需要再審視已知條件,可能還未用盡已知條件或有些暗含的已知條件未挖掘出來。

3. 三步驟

1)先看教科書,真正搞懂課本例題,并做課后練習(xí),雖然看上去很簡單,但是實質(zhì)上就是要你檢查自己是否真的掌握這些基本知識點。

2)利用歷年高考真題, 這些題很有價值,先掩著答案,根據(jù)你之前課本學(xué)的基礎(chǔ)內(nèi)容,嘗試自己親自動手做一下,再對答案,明白其原理,真正弄懂它,看看能否舉一反三,可問老師及同學(xué),也可請家教,最后達到觸類旁通。

3)同步練習(xí),必須緊跟課程,不能賴下來的,一步一個腳印去做。

數(shù)學(xué)知識點較多,容易忘記,但以上的步驟你都能做到的話,那么就不那么容易遺忘,即使忘記,你也可以翻閱以前的內(nèi)容重新鞏固一遍。

熱門推薦

最新文章